Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoceramics

نویسندگان

  • Wook Jo
  • John E. Daniels
  • Jacob L. Jones
  • Xiaoli Tan
  • Pamela A. Thomas
  • Dragan Damjanovic
  • Jürgen Rödel
چکیده

The correlation between structure and electrical properties of lead-free (1−x)(Bi1/2Na1/2)TiO3–xBaTiO3 (BNT-100xBT) polycrystalline piezoceramics was investigated systematically by in situ synchrotron diffraction technique, combined with electrical property characterization. It was found that the morphotropic phase boundary (MPB) between a rhombohedral and a tetragonal phase evolved into a morphotropic phase region with electric field. In the unpoled material, the MPB was positioned at the transition from space group R3m to P4mm (BNT-11BT) with optimized permittivity throughout a broad single-phase R3m composition regime. Upon poling, a range of compositions from BNT-6BT to BNT-11BT became two-phase mixture, and maximum piezoelectric coefficient was observed in BNT-7BT. It was shown that optimized electrical properties are related primarily to the capacity for domain texturing and not to phase coexistence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Phase Boundary in (Bi1/2Na1/ 2)TiO3BaTiO3 Revealed via a Novel Method of Electron Diffraction Analysis

A new phase boundary is revealed in (1-x)(Bi1/2Na1/2)TiO3xBaTiO3, the most extensively studied leadfree piezoelectric solid solution. This discovery results from a novel method of electron diffraction analysis, which allows for the precise determination of oxygen octahedra tilting in multi-domain perovskite ferroelectrics. The study using this method supports the recently proposed Cc symmetry ...

متن کامل

Evolution of the tetragonal to rhombohedral transition in (1 − x)(Bi1/2Na1/2)TiO3 − xBaTiO3 (x ≤ 7%)

(1 - x)(Bi1/2Na1/2)TiO3 - xBaTiO3 has been the most studied Pb-free piezoelectric material in the last decade; however, puzzles still remain about its phase transitions, especially around the important morphotropic phase boundary (MPB). By introducing the strain glass transition concept from the ferroelastic field, it was found that the phase transition from tetragonal (T, P4bm) to rhombohedral...

متن کامل

Evolution of the tetragonal to rhombohedral transition in (1 â‹TM x)(Bi1/2Na1/2)TiO3 â‹TM xBaTiO3 (x ⛤ 7%)

1 − x)(Bi1/2Na1/2)TiO3 − xBaTiO3 has been the most studied Pb-free piezoelectric material in the last decade; however, puzzles still remain about its phase transitions, especially around the important morphotropic phase boundary (MPB). By introducing the strain glass transition concept from the ferroelastic field, it was found that the phase transition from tetragonal (T, P4bm) to rhombohedral ...

متن کامل

Effect of uniaxial stress on ferroelectric behavior of (Bi1/2Na1/2)TiO3-based lead-free piezoelectric ceramics

Prior studies have shown that a field-induced ferroelectricity in ceramics with general chemical formula (1−x−y)(Bi1/2Na1/2)TiO3–xBaTiO3–y(K0.5Na0.5)NbO3 and a very low remanent strain can produce very large piezoelectric strains. Here we show that both the longitudinal and transverse strains gradually change with applied electric fields even during the transition from the nonferroelectric to t...

متن کامل

Creation and destruction of morphotropic phase boundaries through electrical poling: a case study of lead-free (Bi(1/2)Na(1/2))TiO3-BaTiO3 piezoelectrics.

We report the first direct evidence that the morphotropic phase boundary in ferroelectric materials, along with the associated strong piezoelectricity, can be created, destroyed, or even replaced by another morphotropic phase boundary through phase transitions during electrical poling. The real-time evolution of crystal structure and domain morphology during the poling-induced phase transitions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017